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Abstract: The ability of molecular docking, using the program Glide
and an MM-GBSA postdocking scoring protocol, to correctly rank a
number of congeneric kinase inhibitors was assessed. The approach
was successful for the cases considered and suggests that this may be
useful for the design of inhibitors in the lead optimization phase of
drug discovery.

There are many approaches employed to predict the binding
free energy of a small molecule to a protein target. These range
in degrees of physical rigor and the time needed to perform the
calculations. At one end of the spectrum lie free energy
perturbation (FEP) and thermodynamic integration (TI) methods,
which have been successfully applied to reproduce experimen-
tally determined free energies.1-3 However, these approaches
are computationally expensive and are not realistically available
to a drug discovery team for routinely profiling potential
molecules for future rounds of synthesis. At the other end of
the spectrum lie scoring functions that are employed by docking
programs.4 These scoring functions are designed for processing
large numbers of molecules in a short period of time, and as a
consequence, their accuracy in predicting the relative free
energies of known actives is quite poor.5 It is believed that the
many approximations employed in such calculations, such as a
lack of protein flexibility, inadequate treatment of solvation,
and the simplistic nature of the energy function used, contribute
to the inability of these scoring functions to discriminate between
compounds of similar chemical structure that differ by several
log units in potency. There are some approaches that reside
between the two extremes just outlined. These includeλ-dynam-
ics,6 linear interaction energy approaches,7 molecular dynamics/
Monte Carlo simulations,8 OWFEG,9 and MM-PBSA calcula-
tions.10 The last is an approach pioneered by Kollman and
colleagues and involves less sampling compared to molecular
dynamics and Monte Carlo based approaches and uses a
combination of a molecular mechanics energy term with a
continuum solvation model and a surface area dependent term
to predict free energy differences.

The MM-PBSA approach has recently become of interest in
drug discovery as an option for predicting relative binding free
energies of drug discovery project compounds with an accept-
able level of accuracy on a time scale that is commensurate
with synthetic chemistry-biological test cycles.11-13

In this article the assessment of molecular docking with a
related scoring approach, MM-GBSA,14 is reported for four
kinases. The examples were chosen to examine the ability of
the approach to correctly rank the relative potencies of
compounds from the same chemical class against a kinase, with
potencies that range from low micromolar to low nanomolar
IC50 values. The data sets were compiled from in-house projects,

using publicly available, self-consistent data. The chemical series
employed for these studies are illustrated in Figure 1.

All the docking and scoring calculations were performed
using the Schrodinger suite of software (Maestro, version
70110).15 The compounds were extracted from the corporate
database in SMILES format and were converted to 3D using
the program Corina. The compound data sets were then imported
into Maestro and were prepared for docking using Ligprep. The
proteins were prepared by removing all solvent and adding
hydrogens and minimal minimization in the presence of bound
ligand using Pprep. Grids for molecular docking with Glide16

were calculated with a hydrogen bond constraint to a backbone
NH in the hinge region of each kinase (M109 in p38 (pdb code
2bak), A212 in Aurora A (pdb code 2c6e), L83 in Cdk2 (pdb
code 1oiu), and M149 in Jnk3 (in-house structure)). Compounds
were docked using Glide in extra-precision mode, with up to
three poses saved per molecule. The docked poses were then
minimized using the local optimization feature17 in Prime, and
the energies were calculated using the OPLS-AA force field18

and the GBSA continuum model19 in Maestro. For each
molecule the best scoring pose was selected for comparison with
the experimental IC50 values. The binding free energy∆Gbind

is estimated as

where∆EMM is the difference in energy between the complex
structure and the sum of the energies of the ligand and
unliganded protein, using the OPLS force field,∆Gsolv is the
difference in the GBSA solvation energy of the complex and
the sum of the solvation energies for the ligand and unliganded
protein, and∆GSA is the difference in the surface area energy
for the complex and the sum of the surface area energies for
the ligand and uncomplexed protein. Corrections for entropic
changes were not applied.

The calculated binding energies are plotted against pIC50 for
each target in Figure 2. As can be seen, the approach has been
very successful at getting the correct relative rankings and there
is a high correlation observed between the calculated and
experimental values. The p38 data set20 used here (Table 1)
provides a number of challenges. The protein binds to these
inhibitors in a DFG-out conformation, and this conformation
of the protein affords the ligands the possibility of binding to
an additional hydrophobic pocket (at position R4, Figure 1a)
that is not present in the traditional DFG-in conformation of
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Figure 1. (a) p38 inhibitors, (b) Aurora A inhibitors, (c) Cdk-2
inhibitors, and (d) Jnk-3 inhibitors.

∆Gbind ) ∆EMM + ∆Gsolv + ∆GSA
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the protein. In addition, the substitution pattern around the
middle phenyl ring corresponds to subtle changes in structure
that have a dramatic effect on the measured potencies (e.g.,1d
and1f). The range of IC50 is quite small (10 nM to 2.1µM),
which is typical of the range being considered during the lead
optimization stages of a project. Considering all of this, the MM-
GBSA scoring scheme has done remarkably well at discerning
these differences within this structurally similar data set.

Similarly, the inhibitors for the Aurora A data set21 (Table
2) induce the DFG-out conformation of the protein. For this
data set the main areas of variation are the solvent channel, the
DFG-out pocket, and the electronic nature of the central aryl
ring. Thirteen congeneric compounds were chosen for this study,

but not all of these were docked satisfactorily (2i-m) by Glide.
The weakest inhibitor did not yield a solution, and four of the
inhibitors were docked with poor amide conformations in the
DFG-out region of the binding site. Since the purpose of this
exercise is to assess the ability of MM-GBSA to correctly predict
the relative affinity of compounds, given a correct binding mode,
it is reasonable to exclude these compounds in the assessment,
as the docking is driven entirely by the internal GlideScore and
has nothing to do with the MM-GBSA score. Nonetheless, this
highlights that it is necessary to have a high degree of confidence
in the binding mode that is being generated prior to undertaking
any rescoring of the poses generated by Glide. For the remaining
eight compounds the correlation between the predicted∆Gbind

and experimental pIC50 is good and importantly the relative
ranking of the most potent and least potent compounds is
identified, capturing the subtleties in substitution pattern on the
aryl group in the DFG-out pocket and the differences between
the phenyl and pyrimidyl regioisomers for the central aryl ring.

The Cdk-2 data set22 includes compounds that explore the
channel to solvent. The compounds chosen for this study were
selected on the basis of covering a reasonable range of potency
and variability in the nature of the chemistry substituents placed
in the solvent channel of Cdk-2 (Table 3). There is an
expectation that binding energy predictions on compound sets
where the greatest change is in a solvent exposed region would
benefit greatly from having energy terms that consider solvation.
The data set comprised 11 compounds from a purine set
spanning the IC50 range 5 nM to 12µM. Again, the ability of
the MM-GBSA score to discern the differences in binding
energies of this congeneric set is impressive, where the variations
are small changes in the solvent channel region of the protein.

The final data set corresponds to bipyridyl inhibitors of Jnk-3
kinase (Table 4).23 These compounds are reported to bind to
Jnk-3 with one aniline group oriented into the solvent channel
of the kinase and with the other aniline directed toward the

Figure 2. Predicted∆Gbind vs pIC50: (a) p38, (b) Aurora A, (c) Cdk-2
and (d) Jnk-3.

Table 1. Data Set Used for the p38 Case Study20

compd R1 R2 R3 R4 IC50 (µM)

1a H H H H 0.141
1b H F F H 0.054
1c H H Cl H 0.088
1d H H Me H 0.078
1e H Cl F H 0.518
1f H Me H H 2.090
1g F H H H 0.690
1h H Cl H H 0.615
1i H H H NMe2 0.212
1j H H Cl NMe2 0.047
1k H H Me NMe2 0.031
1l H Cl H NMe2 1.690
1m H H Me N-morpholino 0.010

Table 2. Data Set Used for the Aurora A Case Study21

compd R1 R2 W X Y Z
IC50
(µM)

2a Me phenyl C C C C 0.393
2b Pr(morpholine) phenyl C N N C 0.003
2c Pr(morpholine) phenyl N C C N 0.629
2d Pr(morpholine) 4-pyridyl C N N C 0.690
2e Pr(morpholine) 3-chloro-4-fluoro-

phenyl
C N N C 0.00015

2f Pr(morpholine) 3-bromo-
4-methylphenyl

C N N C 0.070

2g Pr(morpholine) phenyl C C C C 0.110
2h (2S)-2-hydroxy-

3-piperidin-1-ylpropyl
phenyl C N N C 0.0008

2i* Pr(piperidine) 3-chlorophenyl C N N C 0.0008
2j* Pr(morpholine) 3-chlorophenyl C N N C<0.0001
2k* Pr(morpholine) 4-ethylphenyl C N N C 0.085
2l* Pr(morpholine) n-butyl C N N C 0.017
2m* Pr(morpholine) (4-dipropylamino-

sulfonyl)phenyl
C N N C 3.9
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hydrophobic pocket adjacent to the M146 gatekeeper residue.
This is in contrast to the binding mode of these same compounds
to Jnk-1.23 In Jnk-3 the gatekeeper residue moves to accom-
modate the substituted aniline. Glide was unable to yield suitable
poses for the two inactive compounds4h and4i. For the former,
no suitable pose was found, while for the latter, the only poses
found shifted the scaffold by approximately 1.5 Å or more
relative to the known structures and the poses found for the
remainder of the data set. As such, the two inactive compounds
were therefore not included in the MM-GBSA postdocking
analysis. As can be seen in Figure 2d the scoring protocol has
once again performed well for the compounds considered.

In all cases here, GlideScore does not provide as good a
correlation with experimental data and is always outperformed
by the MM-GBSA score (Supporting Information). This is
probably not a flaw unique to GlideScore but is more likely an
indication of the poor performance that is common to most
docking scoring functions for the types of tasks presented here.
It is noted that GlideScore has been primarily optimized to yield
accurate binding poses, and in almost all cases here, it has been
performed to give very good poses, based on public and in-
house X-ray structural information for each of the series.

In conclusion it appears that incorporation of more physically
relevant energy terms such as solvation energy and surface area
accessibility with a force field has produced a method that could
be applied with confidence to ranking synthetic ideas and
prioritizing compounds from these chemical classes for synthesis
as inhibitors against the relevant kinases considered here (using
the protein structures employed in these studies).

The data presented here indicate that the method would need
to be benchmarked against a known set initially to see if it is
suitable for guiding structure-based design of inhibitors and also
that it is necessary to have a high degree of confidence in the
binding modes being used as input for the MM-GBSA protocol.
In addition, it is possible that for certain functional groups the
GB parameters may not be of high enough quality to yield
reliable results.

Overall, the protocol of using Glide for pose generation and
an MM-GBSA protocol for rescoring appear promising for the
application to structure-based lead optimization of chemical
series for inhibition of protein kinases.
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